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Abstract

The Southern Hemisphere Westerly Winds (SWW) have been suggested to exert a
critical influence on global climate through wind-driven upwelling of deep water in the
Southern Ocean and the potentially resulting atmospheric CO2 variations. The investi-
gation of the temporal and spatial evolution of the SWW along with forcings and feed-5

backs remains a significant challenge in climate research. In this study, the evolution of
the SWW under orbital forcing from the mid-Holocene (7 kyr BP) to pre-industrial mod-
ern times (250 yr BP) is examined with transient experiments using the comprehensive
coupled global climate model CCSM3. In addition, a model inter-comparison is carried
out using orbitally forced Holocene transient simulations from four other coupled global10

climate models. Analyses and comparison of the model results suggest that the annual
and seasonal mean SWW were subject to an overall strengthening and poleward shift-
ing trend during the course of the mid-to-late Holocene under the influence of orbital
forcing, except for the austral spring season, where the SWW exhibited an opposite
trend of shifting towards the equator.15

1 Introduction

Mid-latitude westerly winds belong to the prominent features of the global tropospheric
circulation. The present day positions of the Southern Hemisphere Westerly Winds
(SWW) during austral summer (December-January-February) and winter (June-July-
August) are illustrated in Fig. 1. The SWW dominate climate dynamics and influence20

the precipitation patterns between ∼30◦ S and 70◦ S (e.g. Thresher, 2002; Shulmeister
et al., 2004). Changes in strength and position of the SWW may affect the large-scale
Atlantic hydrography and circulation through the impact on the Indian-Atlantic Ocean
water exchange by Agulhas leakage (Sijp and England, 2009; Biastoch et al., 2009).
Furthermore, it has been suggested that the SWW exert a crucial influence on the25

global ocean circulation through wind-driven upwelling of deep water in the South-
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ern Ocean (Toggweiler and Samuels, 1995; Kuhlbrodt et al., 2007; Sijp and England,
2009). The potentially resulting influence on atmospheric CO2 variations on orbital
timescales has been controversially discussed (Toggweiler et al., 2006; Menviel et al.,
2008; Tschumi et al., 2008; Anderson et al., 2009; Moreno et al., 2010; d’Orgeville et
al., 2010). Therefore, understanding the variability and the impact of various forcings5

on the SWW remains a significant area of investigation.
The variability of the SWW on glacial-interglacial timescales has been discussed in

some earlier works, in which contradicting results regarding the direction of meridional
shift of the mean wind were presented. While some climate modelling studies sug-
gested a poleward shift in storm tracks and SWW during the Last Glacial Maximum10

(Valdes, 2000; Wyroll et al., 2000; Kitoh et al., 2001; Shin et al., 2003), other models
simulated an equatorward (Kim et al., 2003) or no latitudinal displacement, but rather
an intensification (Otto-Bliesner et al., 2006) of the mean westerlies. Likewise, proxy-
based reconstructions of the glacial SWW provided contradictory views with claims of
a poleward displacement (e.g. Markgraf, 1987; Markgraf et al., 1992) standing in con-15

trast to evidence of an equatorward shift (e.g. Heusser, 1989; Lamy et al., 1998, 1999;
Shulmeister et al., 2004) compared to the pre-industrial conditions. Lamy et al. (2010)
suggested that past variations in the SWW were not only characterized by latitudinal
shifts but also by expansions and contractions of the wind belt. During the deglacial
peak warmth in Antarctica (∼12–9 kyr ago), they provided evidence for a minimal lati-20

tudinal extent of the belt, analogous to its present-day summer configuration.
An important forcing of global climate on longer time scales is accomplished by

changes in the seasonal insolation caused by the varying Earth orbital parame-
ters. This astronomical forcing is generally regarded as a dominant factor for glacial-
interglacial climate changes (Milankovitch, 1941; Hays et al., 1976; Berger, 1978; Im-25

brie et al., 1992). Although the climate of the Holocene is generally being considered
as relatively stable compared to the last glacial (e.g. Grootes and Stuiver, 1997), it has
also been suggested that there have been long-term trends in the spatial and tempo-
ral patterns of surface temperature during the Holocene (e.g. Battarbee and Binney,
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2008). A considerable variation in the seasonal and latitudinal distribution of insolation,
especially a decrease in austral winter-spring insolation accompanied by an increase
in austral summer-fall insolation, can be observed between 7 kyr BP and present day
(Fig. 2). These changes in seasonal insolation might have caused long-term variations
in the structure, position and intensity of the SWW on multi-millennial timescales (e.g.5

Markgraf et al., 1992; Lamy et al., 2001; Jenny et al., 2003; Lamy et al., 2010). The
aim of this study is to analyze the response of the SWW to the changes in insolation
during the mid-to-late Holocene using transient experiments with the comprehensive
global climate model CCSM3. In addition, we compare this simulated Holocene evolu-
tion of the SWW under orbital forcing with transient experiments from a range of other10

global climate models. The analyses will lead us to the suggestion that the annual
and seasonal mean SWW experienced a poleward shifting trend in general – except
for the austral spring season – during the course of the Holocene under orbital forcing,
consistently in all climate models used for this inter-comparison.

2 Methods15

To study the Holocene evolution of SWW under the influence of orbital forcing, tran-
sient experiments have been carried out using the comprehensive global climate model
CCSM3 (Community Climate System Model version 3). NCAR’s (National Center for
Atmospheric Research) CCSM3 is a state-of-the-art fully coupled model, composed of
four separate components representing atmosphere, ocean, land and sea-ice (Collins20

et al., 2006). Here, we employ the low-resolution version described in detail by Yeager
et al. (2006). In this version the resolution of the atmospheric component is given by
T31 (3.75◦ transform grid), with 26 layers in the vertical, while the ocean has a nominal
resolution of 3◦ (like the sea-ice component) with refined meridional resolution (0.9◦)
around the equator and a vertical resolution of 25 levels.25
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2.1 Experimental setup for CCSM3

From a pre-industrial equilibrium simulation (Merkel et al., 2010), the model was inte-
grated for 400 yr with conditions representing 9 kyr BP orbital forcing to reach a new
quasi-equilibrium. After this spin-up, transient experiments were carried out by apply-
ing an acceleration (by a factor of 10) to the orbital forcing year until present day. The5

underlying assumptions for the application of this acceleration technique are that or-
bital forcing operates on much longer timescales (> millennia) than those inherent in
the atmosphere and surface mixed layer of the ocean (months to years), and that cli-
mate changes related to long-term variability of the thermohaline circulation during the
time period considered are negligible in comparison with orbitally-driven surface tem-10

perature variations (Lorenz and Lohmann, 2004; Lorenz et al., 2006). Climate trends
of the last 9000 yr, imposed by the external orbitally driven insolation changes, are
represented in the experiments with only 900 simulation years with the application of
acceleration by a factor 10. Thus, it was possible to conduct three Holocene transient
experiments with different initial conditions within the available computer resources.15

While the first transient run was initialized with the quasi-equilibrated 9 kyr BP state,
the second and third transient runs used the 8.9 and 8.8 kyr BP climates from the first
transient run as initial conditions at 9 kyr BP. Throughout the Holocene experiments,
greenhouse gas concentrations as well as aerosol and ozone distributions were kept
at pre-industrial values as prescribed by the protocol of the Paleoclimate Modelling In-20

tercomparison Project (PMIP), Phase II (Braconnot et al., 2007). Besides, variations
in the Sun’s output of energy and changes in continental ice-sheets were ignored such
that variations in the orbital parameters were the sole external forcing in the model
simulations.

2.2 Model inter-comparison25

In addition to our CCSM3 experiments, results from five other Holocene transient cli-
mate model simulations are analyzed here in order to study the evolution of the SWW
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under insolation changes. These models are ECHO-G (Lorenz and Lohmann, 2004;
Wagner et al., 2007), COSMOS (Pfeiffer and Lohmann, 2011), ECBilt-CLIO-VECODE
(Renssen et al., 2009) and CLIMBER2-LPJ (Kleinen et al., 2010). As in the CCSM3
transient runs, all these models have been forced by orbital variations only, keeping
greenhouse gas concentrations constant at their pre-industrial levels. A short and very5

general overview of these simulations is given below and detailed descriptions are
available from the given references.

2.2.1 ECHO-G (I)

Holocene climate has been simulated using the coupled atmosphere-ocean general
circulation model ECHO–G (Legutke and Voss, 1999). The atmospheric part of this10

model is the fourth generation of the European Centre atmospheric model of Hamburg
(ECHAM4, Roeckner et al., 1996). The prognostic variables are calculated in the spec-
tral domain with a triangular truncation at wave number 30 (T30), which corresponds
to a Gaussian longitude–latitude grid of approximately 3.8◦. The vertical domain is rep-
resented by 19 levels. The ocean model includes a dynamic-thermodynamic sea-ice15

model and is defined on a grid with approximately 2.8◦ resolution (increased merid-
ional resolution of 0.5◦ in the tropics to allow a more realistic representation of the
ENSO phenomenon) and 20 irregularly spaced levels in the vertical. Acceleration by
a factor 10 has been applied to the orbital forcing in these experiments to produce a
two-member ensemble of transient Holocene runs covering the last 7000 yr (Lorenz20

and Lohmann, 2004).

2.2.2 ECHO-G (II)

Model and forcing are identical to ECHO-G (I), except for the fact that there is no ac-
celeration applied on the orbital forcing for the Holocene transient run. Comparing the
results of the non-accelerated ECHO-G (II) experiment with those from the accelerated25

ECHO-G (I) allows an assessment of the effect of orbital acceleration on the Holocene
simulation of the SWW.
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2.2.3 COSMOS

The core of COSMOS consists of the atmosphere model ECHAM5 (Roeckner et al.,
2003) and the ocean model MPI-OM (Marsland et al., 2003). For long-term integra-
tions, a low- resolution version of this model is applied with spectral T31 (3.75◦ trans-
form grid) resolution in the atmosphere and approximately 3◦ horizontal resolution in5

the ocean. In the vertical, atmosphere and ocean model grids are defined on 19 and
40 levels, respectively. The ocean model includes a dynamic-thermodynamic sea-ice
model with viscous-plastic rheology. A dynamic vegetation module is coupled to the
land surface model JSBACH allowing an interactive adaptation of the terrestrial bio-
sphere to varying climate conditions (Brovkin et al., 2009). Orbital acceleration with a10

factor 10 has been applied to simulate the past 8000 yr.
Besides the simulations with coupled general circulation models described above,

two Holocene runs with Earth system Models of Intermediate Complexity (EMICs) are
also included in this study, they being, ECBilt-CLIO-VECODE and CLIMBER2-LPJ.

2.2.4 ECBilt-CLIO-VECODE15

The first EMIC transient run was carried out with version 3 of ECBilt-CLIO-VECODE.
The atmospheric component is ECBilt, a quasi-geostrophic model with 3 layers in the
vertical and T21 (∼5.6◦) horizontal resolution (Opsteegh et al., 1998). CLIO is the
oceanic component and consists of a free-surface, primitive-equation ocean general
circulation model coupled to a dynamic-thermodynamic sea-ice model (Goosse and20

Fichefet, 1999). CLIO is defined on 20 levels in the vertical and has a 3◦ horizontal res-
olution. VECODE interactively simulates the dynamics of trees and grasses (Brovkin et
al., 2002). Orbital forcing without acceleration was applied to simulate the past 9000 yr.
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2.2.5 CLIMBER2-LPJ

The second EMIC used in this inter-comparison is CLIMBER2-LPJ (Petoukhov et al.,
2000). The model consists of a 2.5-dimensional statistical-dynamical atmosphere
with a resolution of approximately 51◦ (longitude) by 10◦ (latitude), a zonally averaged
ocean resolving three basins with a latitudinal resolution of 2.5◦, and a sea-ice model.5

CLIMBER2-LPJ also contains dynamic vegetation, oceanic biogeochemistry, a model
for marine biota, and a sediment model (Archer, 1996; Brovkin et al., 2002, 2007). The
transient simulations were carried out with non-accelerated orbital forcing for the past
8000 yr, keeping greenhouse gas forcing fixed as in the other model experiments to
pre-industrial levels.10

The model descriptions are summarized in Table 1. The spatial distribution of the
annual mean SWW for the period 7 kyr BP to 250 yr BP represented in various models
is given in Fig. 1 of the Supplement.

3 Results

In this section, we present the simulated insolation-forced SWW Holocene trends for15

all climate models used for the inter-comparison. As the strength and position of the
SWW are strongly related to meridional surface temperature gradients (Brayshaw et
al., 2008; Lu et al., 2010; Chen et al., 2010) we will also analyse the modelled trends
in surface temperature. In order to have a time period of comparison which is common
for all model simulations, all analyses are done for the period 7 kyr BP to 250 yr BP. For20

CCSM3 and ECHO-G (I) we have used the three-member and two-member ensemble
means, respectively.

3.1 Annual and seasonal mean trends in SWW

The spatial distribution of Holocene trends in the annual-mean low-level zonal wind in
the Southern Hemisphere for the period 7 kyr BP to 250 yr BP for all models is repre-25
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sented in Fig. 3. The zonal wind trends are plotted at 850 hPa for CCSM3, ECHO-G
(I and II) and COSMOS, and at the lowermost model level for ECBilt-CLIO-VECODE
(800 hPa) and CLIMBER2-LPJ. All models exhibit a general trend of strengthening in
the southern and central SWW region and a weakening trend in the northern part of
the SWW belt, which can be interpreted as a poleward displacement of the annual-5

mean westerly circulation during the course of the mid-to-late Holocene (Fig. 3). This
spatio-temporal wind pattern resembles a long-term trend of the Southern Annular
Mode (or Antarctic Oscillation) towards its positive phase (e.g. Sen Gupta and Eng-
land, 2006). Strengthening of the SWW in the latitudinal belt between about 40◦ S and
60◦ S (i.e. the SWW core region) is most intense and continuous in ECHO-G (I and10

II), followed by CCSM3. While COSMOS shows a pronounced strengthening of the
SWW in the region between ∼50◦ S and 70◦ S, ECBilt-CLIO-VECODE simulates a less
annular pattern, but, with respect to the zonal mean, a strengthening in the core SWW
latitude belt is seen. CLIMBER2-LPJ produces the weakest trends, probably due to its
simplified dynamics that does not explicitly simulate eddy momentum transports.15

The simulated timeseries of the annual-mean SWW temporal evolution in all models
used for inter-comparison are represented by an index and is displayed in Fig. 4. The
index is defined as the difference of the zonally averaged zonal low-level winds between
the latitudes 55◦ S and 35◦ S and is a measure for latitudinal displacements of the SWW
belt (Varma et al., 2011). An evident trend observed in all the models is the strength-20

ening of the low-level winds towards 55◦ S during the course of Holocene (Fig. 4). The
strongest changes occur during the mid-Holocene (4000 to 6000 yr BP) in almost all
the models. Again, ECHO-G (I) and ECHO-G (II) are very similar, CLIMBER2-LPJ
follows the deterministic insolation, CCSM3 and COSMOS show pronounced internal
variability for the last 3000 yr.25

The zonally averaged simulated Holocene trends in low-level zonal winds separately
for each season are represented in Fig. 5 (see Supplement for the maps of seasonal
trends in Southern Hemisphere zonal winds). For the March-April-May (MAM) season,
all models show the most pronounced southward shift and strengthening of SWW in
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the latitudinal belt between about 40◦ S and 60◦ S. During the June-July-August (JJA)
season, CCSM3, ECHO-G (I and II) and CLIMBER2-LPJ sustain the pattern of SWW
strengthening in that latitudinal belt, whereas ECBilt-CLIO-VECODE exhibits a weak-
ening in this region. The most striking feature in Figure 5 is the SWW behaviour during
the September-October-November (SON) season. This season shows the trend of a5

SWW weakening (between the latitudes ∼40◦ S and 60◦ S) and northward shift in all
the models, i.e. opposite to the annual-mean trend.

3.2 Annual and seasonal mean trends in surface temperature

The spatial distributions of Holocene trends in Southern Hemisphere annual-mean sur-
face temperature for the period 7 kyr BP to 250 yr BP is shown in Fig. 6. The most no-10

ticeable trend pattern in all models relates to an intense cooling in the southern high
latitudes especially around Antarctica. In low latitudes, the temperature trend patterns
are more heterogeneous among the different models. For instance, CCSM3 exhibits a
large-scale (albeit weak) tropical warming trend, while ECHO-G (II) shows more of a
tropical cooling (Fig. 6c).15

The seasonal response pattern of Holocene surface temperature trends in the South-
ern Hemisphere caused by variations in orbital forcing is more entangled. The zonally
averaged trends in the surface temperature on a seasonal basis as simulated by the
different models is displayed in Fig. 7 (see Supplement for the Southern Hemisphere
maps of seasonal trends in surface temperature). Austral summers (DJF) experience20

a lower-than-present insolation during the early Holocene (Fig. 2) resulting in a general
warming trend in the Southern Hemisphere during the course of the Holocene, which
is most pronounced over the continents (Fig. 8 of Supplement). By contrast, the austral
winter season (JJA) shows strong cooling trends over the Southern Hemisphere conti-
nents as a direct response to decreasing insolation (Fig. 6 of Supplement). The MAM25

and SON seasons exhibit the most uniform trends on a hemispherical scale over both
Southern Hemisphere land and ocean in all the models (Figs. 5 and 7 of Supplement).
Among all the seasons, the austral spring (SON) shows the strongest seasonal cooling
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trend, whereas the austral fall (MAM) exhibits the strongest seasonal warming trend
(Fig. 7) as a result of insolation changes in combination with a delayed response of the
climate system by 1–3 months owing to the thermal inertia of the surface ocean (cf.
Renssen et al., 2005). However, even during the MAM season, the Southern Ocean
regions around Antarctica show a cooling trend, opposite to what would be expected5

from the local insolation trend (Fig. 2). This regional cooling trend has been attributed
to a long memory of the Southern Ocean through the storage of late winter-spring sur-
face temperature anomalies in the deep upper-ocean winter layer in combination with
sea ice-albedo and ice-insulation feedbacks (Renssen et al., 2005). While the study
of Renssen et al. (2005) is based on a single coupled model, our multi-model inter-10

comparison supports their results and reveals that this is a robust feature captured by
all models. As a result, all models show a year-round Holocene cooling trend in the
Southern Ocean (Figs. 6, 7).

4 Discussion

Surface westerlies result from the westerly momentum flux convergence by transient15

eddies acting against losses by surface friction. The eddies, in turn, are driven by the
potential energy available in the meridional temperature gradient (e.g., Vallis, 2006).
Consequently, strength and position of the SWW depends to a large extent on surface
temperature patterns (Brayshaw et al., 2008; Lu et al., 2010; Chen et al., 2010). The
most significant pattern that could be noted in both annual and seasonal means is20

the strong cooling trend in the southern high latitudes, especially around Antarctica
(Figs. 6, 7). Ice cores indeed provide evidence for a widespread Antarctic Holocene
cooling trend (Masson et al., 2000) underpinned by palaeoclimate reconstructions from
the Ross Sea (Steig et al., 1998) and the Palmer Deep (Domack et al., 2001).

The southern high-latitude cooling trend results in a steepening of the pole-to-25

equator surface temperature gradient. Recent theoretical and modelling studies have
shown that an enhanced meridional temperature gradient does not only lead to an
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overall strengthening of the SWW, but that the surface temperature pattern also influ-
ences the position of the wind belt (Brayshaw et al., 2008; Lu et al., 2010; Chen et
al., 2010). Accordingly, a stronger meridional surface temperature gradient at high lat-
itudes is accompanied by a poleward shift of the surface westerlies due to enhanced
high-latitude baroclinic wave generation. This may explain the overall poleward shifting5

trend of the SWW that prevails in the annual mean in all the models. During the MAM
season, when this trend is strongest, two additional effects contribute to the southward
movement of the westerlies: Increasing insolation during the austral late summer with
highest values in low latitudes (i.e. increasing meridional insolation gradient; Fig. 2) in
combination with the 1–3 months time lag, owing to the thermal inertia of the surface10

climate system (Renssen et al., 2005), leads to a further increase in the meridional tem-
perature gradient as well as to a hemispheric-scale warming trend during the austral
fall (Fig. 7). By means of general atmospheric circulation modelling and scaling argu-
ments, it has recently been shown that an increase in the global (or hemispheric-scale)
surface temperature increases the latitudinal extent of the Hadley cell (Frierson et al.,15

2007) and shifts the eddy-driven surface westerlies towards the pole (Lu et al., 2010),
thus contributing to the maximum insolation-response of the SWW during the MAM
season (Fig. 5). During the SON season, the trend in insolation-forcing is of opposite
sign (Fig. 2), leading to a hemispheric-scale cooling trend and hence an equatorward
movement of the SWW (Fig. 5). The model results consistently suggest that the annual20

and seasonal mean SWW exhibit an overall strengthening and poleward shifting trend
during the course of the mid-to-late Holocene under the influence of orbital forcing,
except for the austral spring season, where the SWW exhibit an opposite trend of shift-
ing towards the equator. Our findings for Holocene SWW shifts are largely consistent
with a recent study by Rojas and Moreno (2010) who analyzed a multi-model-mean of25

PMIP2 simulations for 6 kyr BP. They found an enhanced annual-mean westerly flow
between ∼35◦ S and 45◦ S and a weakening south of ∼45◦ S for the mid-Holocene time
slice relative to the present.
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Validating the model results with reconstructions of the paleo-SWW proves still to be
elusive, as there is a substantial incongruity between different proxy records. For the
SWW core region around 51◦–53◦ S, for instance, terrestrial ecosystem proxy records
from western Patagonia (Moreno et al., 2010) suggest a trend of increasing SWW
strength during the past 7000 yr that is not supported by sedimentological and pollen-5

based reconstructions of South Patagonian precipitation by Lamy et al. (2010). As
a cautionary note, we emphasize again that the model simulations suggest opposite
Holocene trends in SWW variations for different seasons (Fig. 5) which may affect the
proxy records and their interpretation.

5 Conclusions10

The investigation of the temporal and spatial evolution of the SWW along with forc-
ings and feedbacks remains a significant challenge in climate research. In this study,
we examined the Holocene evolution of SWW under the influence of orbital forcing
with transient experiments using the state-of-the-art comprehensive coupled global cli-
mate model CCSM3. In addition, a model inter-comparison has been conducted using15

Holocene transient simulations from four other coupled global climate models, namely,
ECHO-G, COSMOS, ECBilt-CLIO-VECODE and CLIMBER2-LPJ. Analyses and com-
parison of the model results suggest that the annual and seasonal mean SWW were
subject to an overall strengthening and poleward shifting trend during the course of the
mid-to-late Holocene under the influence of orbital forcing, except for the austral spring20

season, where the SWW exhibited an opposite trend of shifting towards the equator.
The comparison between an accelerated and a non-accelerated ECHO-G experiment
revealed that the simulation of these trends is unaffected by the orbital acceleration
technique employed in some of the transient runs. In view of a substantial incongruity
between different SWW simulations for the Last Glacial Maximum (Rojas et al., 2009),25

the agreement among the different models with respect to Holocene SWW trends is en-
couraging. However, the magnitude of SWW shift is much smaller in EMICs compared
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to the comprehensive general circulation models. Therefore, the potential feedbacks in
their climate/carbon cycle simulations may be underestimated.

Whether the simulated shifts in the SWW had the potential to affect atmospheric CO2
concentrations through degassing of the deep ocean via changes in wind-driven up-
welling in the Southern Ocean (Moreno et al., 2010) remains elusive at the time being.5

Moreover, the effect of increasing greenhouse gases from the mid to the late Holocene
(e.g. Raynaud et al., 2000) is not included in the orbital-forced model simulations pre-
sented here, although there is strong evidence for a CO2-induced strengthening and
poleward shift of the SWW over the past four decades (e.g. Arblaster and Meehl, 2006;
Toggweiler and Russell, 2008). In future studies, the combined effects of orbital and10

greenhouse gas forcing should be explored using comprehensive climate models in
order to put the Southern Hemisphere circulation changes of the last decades into a
long-term context.

Supplementary material related to this article is available online at:
http://www.clim-past-discuss.net/7/1797/2011/cpd-7-1797-2011-supplement.15

pdf.
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Table 1. Brief summary of the climate models used for inter-comparison.

Model Name Orbital Acceleration Resolution

CCSM3 by a factor of 10; 3 member ensemble T31 – Atmosphere & Land: 3.75◦; 26 layers
Ocean & Ice: 3.6◦×1.6◦; 25 layers

ECHO-G (I) by a factor of 10; 2 member ensemble T30 – Atmosphere & Land: 3.8◦; 19 layers
Ocean & Ice: 2.8◦; 20 layers

ECHO-G (II) non-accelerated; 1 simulation T30 – Atmosphere & Land: 3.8◦; 19 layers
Ocean & Ice: 2.8◦; 20 layers

COSMOS by a factor of 10; 1 simulation T31 – Atmosphere & Land: 3.75◦; 19 layers
Ocean & Ice: 3◦; 40 layers

ECBilt-CLIO-VECODE non-accelerated; 1 simulation T21 – Atmosphere: 5.6◦; 3 layers
Ocean: 3◦; 20 layers

CLIMBER2-LPJ non-accelerated; 1 simulation Atmosphere: 51◦×10◦

Ocean: Zonally averaged, with 2.5◦ latitudinal
resolution; 11 layers
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Fig. 1. Present-day Southern Hemisphere zonal wind climatology at 850 hPa for (a) austral
summer (DJF) and (b) austral winter (JJA), based on NCEP/NCAR reanalysis data (1968–
1996; Kalnay et al., 1996). Overlaid isotherms (contours) represent the climatological sea
surface temperatures (◦C) for the corresponding seasons based on the NODC World Ocean
Atlas (Levitus et al., 1998). During DJF, the northern margin of the zonal wind shows a more
southward confined pattern, while during JJA, it extends further to the north. In general, the sur-
face westerly winds cover the region between ∼ 30◦ S and 70◦ S, with the present-day strongest
wind centred at around ∼ 50◦ S.
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Fig. 2. Latitudinal distribution of insolation in W m−2 at the top-of-the-atmosphere for 7 kyr BP
minus present day, calculated after Berger (1978), through the year.
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Fig. 3. Trend in the annual mean low-level zonal wind in (a) CCSM3, (b) ECHO-G (I), (c)
ECHO-G (II), (d) COSMOS, (e) ECBilt-CLIO-VECODE, and (f) CLIMBER2-LPJ for the period
7 kyr BP to 250 yr BP. All polar stereographic plots represent the Southern Hemisphere, with
latitudes placed at 10◦ interval, starting from equator to 90◦ S.
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Fig. 4. Temporal evolution of annual mean SWW position during the period 7 kyr BP to
250 yr BP in (a) CCSM3, (b) ECHO-G (I), (c) ECHO-G (II), (d) COSMOS, (e) ECBilt-CLIO-
VECODE, and (f) CLIMBER2-LPJ, defined in terms of the difference between the latitudes
55◦ S and 35◦ S (southern and northern parts of the SWW belt respectively) of the zonally av-
eraged low-level zonal winds (black curves). Time axis is plotted against the anomaly of the
mean wind position. A 1000 yr boxcar smoothing with respect to orbital year has been applied
to all the time series except for CLIMBER2-LPJ. Linear regression lines for the time series are
shown in red. Note the different ordinate scales.
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Fig. 5. Zonally averaged seasonal and annual mean trends in the low-level zonal wind in (a)
CCSM3, (b) ECHO-G (I), (c) ECHO-G (II), (d) COSMOS, (e) ECBilt-CLIO-VECODE, and (f)
CLIMBER2-LPJ for the Southern Hemisphere. Note the different ordinate scales.
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Fig. 6. Trend in the annual mean surface temperature in (a) CCSM3, (b) ECHO-G (I), (c)
ECHO-G (II), (d) COSMOS, (e) ECBilt-CLIO-VECODE, and (f) CLIMBER2-LPJ for the period
7 kyr BP to 250 yr BP.
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Fig. 7. Zonally averaged seasonal and annual mean trends in the surface temperature in (a)
CCSM3, (b) ECHO-G (I), (c) ECHO-G (II), (d) COSMOS, (e) ECBilt-CLIO-VECODE, and (f)
CLIMBER2-LPJ for the Southern Hemisphere. Note the different ordinate scales.
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